-
1 empty surface states
Англо-русский словарь промышленной и научной лексики > empty surface states
-
2 surface density of states
Semiconductors: SDOSУниверсальный русско-английский словарь > surface density of states
-
3 между
см. вкраплён между; зазор между; находящийся между... и; проведение реакции между; разница между; распределять между; расхождение между* * *Между -- between, among; in between; to (в спецификациях деталей); in the meantime (между тем; тем временем)The complexities of the mechanics of surface generation and the interaction among the surface states themselves have made it difficult to relate the former to the latter in fundamental terms.Impeller to cover O-ring (Уплотнительное кольцо между рабочим колесом и крышкой)Rear cover to case gasket (Прокладка между задней крышкой и картером)Русско-английский научно-технический словарь переводчика > между
-
4 в теоретическом плане
В теоретическом плане-- The complexities of the mechanics of surface generation and the interaction among the surface states themselves have made it difficult to relate the former to the latter in fundamental terms.Русско-английский научно-технический словарь переводчика > в теоретическом плане
-
5 поверхностные состояния
Household appliances: surface statesУниверсальный русско-английский словарь > поверхностные состояния
-
6 состояния поверхности
Makarov: surface statesУниверсальный русско-английский словарь > состояния поверхности
-
7 граница между воздухом и поверхностью океана
граница между воздухом и поверхностью океана
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
ocean-air interface
The sea and the atmosphere are fluids in contact with one another, but in different energy states - the liquid and the gaseous. The free surface boundary between them inhibits, but by no means totally prevents, exchange of mass and energy between the two. Almost all interchanges across this boundary occur most effectively when turbulent conditions prevail. A roughened sea surface, large differences in properties between the water and the air, or an unstable air column that facilitates the transport of air volumes from sea surface to high in the atmosphere. Both heat and water (vapor) tend to migrate across the boundary in the direction from sea to air. Heat is exchanged by three processes: radiation, conduction, and evaporation. The largest net exchange is through evaporation, the process of transferring water from sea to air by vaporization of the water. (Source: PARCOR)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Русско-немецкий словарь нормативно-технической терминологии > граница между воздухом и поверхностью океана
-
8 длительный допустимый ток
- Strombelastbarkeit, f
- Dauerstrombelastbarkeit, f
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Русско-немецкий словарь нормативно-технической терминологии > длительный допустимый ток
-
9 граница между воздухом и поверхностью океана
граница между воздухом и поверхностью океана
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
ocean-air interface
The sea and the atmosphere are fluids in contact with one another, but in different energy states - the liquid and the gaseous. The free surface boundary between them inhibits, but by no means totally prevents, exchange of mass and energy between the two. Almost all interchanges across this boundary occur most effectively when turbulent conditions prevail. A roughened sea surface, large differences in properties between the water and the air, or an unstable air column that facilitates the transport of air volumes from sea surface to high in the atmosphere. Both heat and water (vapor) tend to migrate across the boundary in the direction from sea to air. Heat is exchanged by three processes: radiation, conduction, and evaporation. The largest net exchange is through evaporation, the process of transferring water from sea to air by vaporization of the water. (Source: PARCOR)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Русско-английский словарь нормативно-технической терминологии > граница между воздухом и поверхностью океана
-
10 длительный допустимый ток
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Русско-английский словарь нормативно-технической терминологии > длительный допустимый ток
-
11 граница между воздухом и поверхностью океана
граница между воздухом и поверхностью океана
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
ocean-air interface
The sea and the atmosphere are fluids in contact with one another, but in different energy states - the liquid and the gaseous. The free surface boundary between them inhibits, but by no means totally prevents, exchange of mass and energy between the two. Almost all interchanges across this boundary occur most effectively when turbulent conditions prevail. A roughened sea surface, large differences in properties between the water and the air, or an unstable air column that facilitates the transport of air volumes from sea surface to high in the atmosphere. Both heat and water (vapor) tend to migrate across the boundary in the direction from sea to air. Heat is exchanged by three processes: radiation, conduction, and evaporation. The largest net exchange is through evaporation, the process of transferring water from sea to air by vaporization of the water. (Source: PARCOR)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Русско-французский словарь нормативно-технической терминологии > граница между воздухом и поверхностью океана
-
12 длительный допустимый ток
- courant permanent admissible, m
- courant admissible, m
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Русско-французский словарь нормативно-технической терминологии > длительный допустимый ток
-
13 вплоть до
. до•The Mid-Atlantic Ridge continues as far as the tip of Baja California.
•This equation is applicable to the behaviour of objects down to molecular and atomic dimensions.
•At absolute zero all states are occupied ( right) up to the Fermi energy.
•Improvements in sensitivity of up to tenfold over conventional spectrophotometry...
•Tetracyclines can raise the blood urea ( even) to the extent of producing severe renal failure.
•Protenoid microspheres tend to display certain similarities to living cells, ( even) to the point of possessing a surface membrane.
•Accuracy is maintained down to the lowest setting.
Русско-английский научно-технический словарь переводчика > вплоть до
-
14 вплоть до
. до•The Mid-Atlantic Ridge continues as far as the tip of Baja California.
•This equation is applicable to the behaviour of objects down to molecular and atomic dimensions.
•At absolute zero all states are occupied ( right) up to the Fermi energy.
•Improvements in sensitivity of up to tenfold over conventional spectrophotometry...
•Tetracyclines can raise the blood urea ( even) to the extent of producing severe renal failure.
•Protenoid microspheres tend to display certain similarities to living cells, ( even) to the point of possessing a surface membrane.
•Accuracy is maintained down to the lowest setting.
Русско-английский научно-технический словарь переводчика > вплоть до
-
15 Clean Water Act
1) Abbreviation: CWA (from Environmental Protection Agency)2) Oil: CWA (Federal law that regulates the discharge of toxic and nontoxic pollutants into the surface waters of the United States; 1972)3) Ecology: CWA -
16 функция
function, functionality* * *фу́нкция ж.
functionфу́нкция A перехо́дит в фу́нкцию B — (the) function A goes into (the) function Bвоспроизводи́ть фу́нкцию — approximate [implement, mechanize, realize] a function
y есть фу́нкция от x — y is a function of x
задава́ть фу́нкцию нея́вно или я́вно — define a function implicitly or explicitlyиссле́довать фу́нкцию на ма́ксимумы и ми́нимумы [на экстре́мумы] — examine [test] a function for maxima and minimaфу́нкция обраща́ется в нуль — a function vanishesфу́нкция определя́ется в о́бласти … — a function is defined on an intervalфу́нкция периоди́чна по, напр. t — a function is periodic in, e. g., tфу́нкция периоди́чна с пери́одом T — a function is periodic with period Tпреобразо́вывать фу́нкцию по Лапла́су — apply the Laplace transformation to a function, take the Laplace transform of a functionприбли́зить сло́жную фу́нкцию бо́лее просто́й — approximate a complex function by a simpler oneприбо́р мо́жет выполня́ть сле́дующие фу́нкции — the instrument offers the following servicesа́белева фу́нкция — Abelian functionавтокорреляцио́нная фу́нкция — autocorrelation functionаддити́вная фу́нкция — additive functionамплиту́дная фу́нкция тлв. — amplitude functionаналити́ческая фу́нкция — analytical functionана́логовая фу́нкция — analog functionаннули́рующая фу́нкция — nullifierаркгиперболи́ческая фу́нкция — arc-hyperbolic [antihyperbolic, inverse hyperbolic] functionфу́нкция без ограниче́ний — unconstrained functionфу́нкция Бе́сселя — Bessel's functionфу́нкция большинства́ — majority functionбу́лева фу́нкция — Boolean functionве́кторная фу́нкция — vector functionвероя́тностная фу́нкция — distribution [probability] functionвесова́я фу́нкция — weighting functionвесова́я фу́нкция поме́хи тлв. — noise weighting functionфу́нкция взаи́мной когере́нтности — mutual coherence functionфу́нкция влия́ния — influence [Green's] functionфу́нкция возбужде́ния — excitation [drive] functionвозраста́ющая фу́нкция — increasing functionволнова́я фу́нкция — wave functionфу́нкция вы́годы киб. — objective [return] functionвы́рожденная фу́нкция — confluent functionвычисли́мая фу́нкция — computable functionфу́нкция Га́мильтона — Hamiltonian functionгармони́ческая фу́нкция — harmonic (function)гиперболи́ческая фу́нкция — hyperbolic functionдействи́тельная фу́нкция — real-valued functionдействи́тельно-зна́чная фу́нкция — real-valued functionфу́нкция де́йствия мех. — action functionде́льта-фу́нкция — delta functionдиссипати́вная фу́нкция — dissipative functionдоброка́чественная фу́нкция — well-behaved functionдо́норная фу́нкция ( атома) — donor functionза́данная фу́нкция — prescribed functionзадаю́щая фу́нкция — driving functionфу́нкция запомина́ния — storage functionфу́нкция запре́та — inhibit functionфу́нкция изоба́рного потенциа́ла — isobaric potential functionи́мпульсная фу́нкция — impulse functionинтегри́рующая фу́нкция — integratorфу́нкция и́стинности — truth functionквадрати́чная фу́нкция — quadratic functionфу́нкция кисло́тности — acidity junctionклассифици́рующая фу́нкция — discriminant function, discriminatorко́мплексная фу́нкция — complex(-valued) functionкорреляцио́нная фу́нкция — correlation function
n-кра́тно дифференци́руемая фу́нкция — n times differentiable functionфу́нкция крите́рия — test functionфу́нкция Лагра́нжа — Lagrangian functionфу́нкция Лежа́ндра — Legendre functionлине́йная фу́нкция — linear functionлине́йно-возраста́ющая фу́нкция — ramp functionлогарифми́ческая фу́нкция — logarithmic functionлоги́ческая фу́нкция — logical functionлоги́ческая фу́нкция включа́ющее ИЛИ — inclusive OR functionлоги́ческая фу́нкция И — AND functionлоги́ческая фу́нкция И—ИЛИ — AND-to-OR functionлоги́ческая фу́нкция ИЛИ — OR functionлоги́ческая фу́нкция исключа́ющее ИЛИ — exclusive OR functionлоги́ческая фу́нкция НЕ — NOT functionфу́нкция логи́ческого сложе́ния — logical addition functionфу́нкция логи́ческого умноже́ния — collate functionмажори́рующая фу́нкция — majorantфу́нкция Матьё́ — Mathieu's functionмногозна́чная фу́нкция — multiple valued functionмоното́нная фу́нкция — monotonic functionневычисли́мая фу́нкция — noncomputable functionфу́нкция неопределё́нности — ambiguity [Woodward] functionнепреры́вная фу́нкция — continuous functionнечё́тная фу́нкция — odd functionнея́вная фу́нкция — implicit functionобобщё́нная фу́нкция — generalized functionобра́тная фу́нкция — inverse functionобра́тная, гиперболи́ческая фу́нкция — inverse hyperbolic [arc-hyperbolic, antihyperbolic] functionобра́тная, тригонометри́ческая фу́нкция — inverse trigonometric [antitrigonometric] functionограни́ченная фу́нкция — bounded functionоднозна́чная фу́нкция — single-valued functionопо́рная фу́нкция — function of support, support [supporting] functionфу́нкция отсчё́тов ( в теории сообщений и теории информации) — sampling functionпервоо́бразная фу́нкция — antiderivative, primitiveпереда́точная фу́нкция — transfer functionреализова́ть переда́точную фу́нкцию на … — implement the transfer function withпереда́точная, дискре́тная фу́нкция — sampled-data transfer [pulse transfer] functionпереда́точная фу́нкция нелине́йного элеме́нта — describing functionпереда́точная, опти́ческая фу́нкция — optical transfer functionпереда́точная фу́нкция по возде́йствию — actuating transfer functionпереда́точная фу́нкция по возмуще́нию — the transfer function to [on] the extraneous signalпереда́точная фу́нкция по входно́му сигна́лу — the transfer function to [on] the input signalпереключа́тельная фу́нкция — switching functionфу́нкция перехо́да ( цифрового мата) — transition [next-state] functionперехо́дная фу́нкция — unit step functionпериоди́ческая фу́нкция — periodic functionразлага́ть периоди́ческую фу́нкцию на слага́емые гармо́ники ме́тодом ана́лиза Фурье́ — resolve a periodic function into harmonic components by Fourier analysisпилообра́зная фу́нкция — saw-tooth functionфу́нкция пло́тности — density functionфу́нкция пло́тности состоя́ний — density-of-states functionподынтегра́льная фу́нкция — integration function, integrandпоказа́тельная фу́нкция — exponential functionпоро́говая фу́нкция — threshold functionпорожда́ющая фу́нкция — generatorпотенциа́льная фу́нкция — potential functionпотенциа́льная фу́нкция скоросте́й — velocity potential functionфу́нкция правдоподо́бия — likelihood functionфу́нкция преобразова́ния — transfer functionпроизво́дная фу́нкция — derived functionпроизводя́щая фу́нкция — generating functionпроизво́льная фу́нкция — arbitrary functionпроста́я фу́нкция — simple functionфу́нкция разбие́ния — partition functionфу́нкция распределе́ния — distribution function; стат. frequency functionфу́нкция распределе́ния вероя́тности — probability distribution functionфу́нкция распростране́ния — propagation function, propagatorфу́нкция рассе́яния — scattering functionрациона́льная фу́нкция — rational functionрегуля́рная фу́нкция — well-behaved functionрекурси́вная фу́нкция — recursive functionреша́ющая фу́нкция — decision functionфу́нкция ри́ска — risk functionсилова́я фу́нкция — force functionсинусоида́льная фу́нкция — sine functionфу́нкция скачко́в — saltus [step, jump] functionсло́жная фу́нкция — composite functionслуча́йная фу́нкция — random functionсо́бственная фу́нкция — eigenfunction, characteristic [fundamental] functionфу́нкция с ограниче́нном — constrained functionфу́нкция с ограни́ченным измене́нием — function of bounded variationфу́нкция состоя́ния — function of state, point functionспектра́льная фу́нкция — spectrum, spectral function, integrated spectrumстепенна́я фу́нкция — power functionступе́нчатая фу́нкция — step [jump] functionсфери́ческая фу́нкция — spherical [surface] harmonic, spherical functionфу́нкция то́ка — stream [flow] functionтрансценде́нтная фу́нкция — transcendental functionтригонометри́ческая фу́нкция — trigonometrical functionфу́нкция управле́ния — control functionфи-фу́нкция Э́йлера — phi function, Euler's function (of an integer)характеристи́ческая фу́нкция — characteristic [fundamental] function, eigenfunctionфу́нкция хране́ния — storage functionце́лая фу́нкция — entire [integral] functionцелева́я фу́нкция ( в исследовании операций) — ( для каждого решения по каждой цели) efficiency function; ( для каждого решения по всем целям) effectiveness functionцилиндри́ческая фу́нкция — Bessel's functionчё́тная фу́нкция — even functionэкспоненциа́льная фу́нкция — exponential functionфу́нкция эне́ргии Ги́ббса — Gibbous functionэргоди́ческая фу́нкция — ergodic function -
17 принимать в расчёт
Принимать в расчёт / во внимание - to take into account, to take into consideration, to take credit for, to give credit for, to pay heed to (учитывать); to bear in mind (иметь в виду)To prevent this, mechanisms should exist whereby external costs are taken fully into account in the decision-making process.Under these conditions the stalled flow model would have to be modified to take this pressure drop into account, as shown schematically in Fig.The ASME Code permits taking credit for the stiffening effect of the tubes, but cautions as to the many variables involved.To be conservative, it is recommended that no credit be given for compressive stress states with TF < 1. In such cases let TF = 1.Currently, PVRC is sponsoring studies to conform the observation by L. that credit should be given for yield strength.Pay heed to the pressure Pmax according to Section 3.1.It should be borne in mind that individual impact sites may be small enough to fall within an individual phase at the bearing surface.Русско-английский научно-технический словарь переводчика > принимать в расчёт
-
18 принимать во внимание
Принимать в расчёт / во внимание - to take into account, to take into consideration, to take credit for, to give credit for, to pay heed to (учитывать); to bear in mind (иметь в виду)To prevent this, mechanisms should exist whereby external costs are taken fully into account in the decision-making process.Under these conditions the stalled flow model would have to be modified to take this pressure drop into account, as shown schematically in Fig.The ASME Code permits taking credit for the stiffening effect of the tubes, but cautions as to the many variables involved.To be conservative, it is recommended that no credit be given for compressive stress states with TF < 1. In such cases let TF = 1.Currently, PVRC is sponsoring studies to conform the observation by L. that credit should be given for yield strength.Pay heed to the pressure Pmax according to Section 3.1.It should be borne in mind that individual impact sites may be small enough to fall within an individual phase at the bearing surface.Русско-английский научно-технический словарь переводчика > принимать во внимание
-
19 состояние
1. plight2. situation3. health4. modeсостояние отказа; вид отказа — failure mode
5. fettleв хорошем состоянии, в прекрасной форме — in good fettle
6. state-of-the-art7. states8. stative9. state; condition; status; station; position; fortuneсостояние счета; состояние финансов — status of the account
10. condition11. fig12. fortune13. means14. position15. status16. way17. estate
См. также в других словарях:
Surface states — are electronic states found at the surface of materials and are part of condensed matter physics. They are formed due to the sharp transition from solid material that ends with a surface and are found only at the atom layers closest to the… … Wikipedia
Surface weather observation — Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. [Office of the Federal Coordinator of Meteorology. [http://www.ofcm.gov/fmh 1/pdf/B CH2.pdf… … Wikipedia
Surface mining — is a type of mining in which soil and rock overlying the mineral deposit are removed. It is the opposite of underground mining, in which the overlying rock is left in place, and the mineral removed through shafts or tunnels. Surface mining is… … Wikipedia
Surface Deployment and Distribution Command — SDDC Emblem des SDDC … Deutsch Wikipedia
Surface Detail — … Wikipedia
Surface wave — Diving grebe creates surface waves In physics, a surface wave is a mechanical wave that propagates along the interface between differing media, usually two fluids with different densities. A surface wave can also be an electromagnetic wave guided … Wikipedia
Surface weather analysis — A surface weather analysis is a special type of weather map that provides a view of weather elements over a geographical area at a specified time based on information from ground based weather stations. [ Air Apparent: How Meteorologists Learned… … Wikipedia
Surface Mining Control and Reclamation Act of 1977 — The Surface Mining Control and Reclamation Act of 1977 (SMCRA) is the primary federal law that regulates the environmental effects of coal mining in the United States.SMCRA created two programs: one for regulating active coal mines and a second… … Wikipedia
Surface runoff — Runoff flowing into a stormwater drain Surface runoff is the water flow that occurs when soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. This is a major component of the water… … Wikipedia
Surface Warfare insignia — The Surface Warfare Insignia is a military badge of the United States Navy which is issued to those Naval personnel who are trained and qualified to perform duties aboard United States surface warships. The Surface Warfare Pin was first proposed… … Wikipedia
Surface Deployment and Distribution Command — US Military Surface Deployment and Distribution Command Surface Deployment and Distribution Command shoulder sleeve insignia Active … Wikipedia